Judging from the trending articles on this site, more than a few of you found the 1,100-horsepower Hurst/Kenne Bell engine build interesting. There’s little wonder as nothing but the best lives inside the 5.2 Coyote-Voodoo hybrid and it promises to hammer out breathtaking power — always a good way to hold a gearhead’s attention.

However, there is the matter of feeding that beast. Inside the team building this monster street mill, attention is currently focused on integrating the engine to the 2017 Mustang chassis. At GTR High Performance Ricardo Topete has taken the whiz wheel to the GT’s upper firewall,a tale we’ll tell after Ricardo has finished shoehorning this long and tall powerplant into position. Simultaneously, Ken Christley at Kenne Bell has been noodling that most bothersome leg of the fire triangle: fuel.

Even 800 horses to the tires is well-travelled territory these days. But exceeding four digits at the crankshaft is right in the gray area where street-bred solutions start running out of capability.

One reason this fueling question is so compelling is it falls right in the cusp between crazy street horsepower and pure race car practice. Fueling a 450-horsepower Coyote is already provided by Ford, and the 1,500-plus-horsepower race car folks long ago figured out a stout, engine-driven pump and custom lawn sprinkler system is what they need. Even 800 horses to the tires is well-travelled territory these days. But exceeding four digits at the crankshaft is right in the gray area where street-bred solutions start running out of capability – but race-bred fuel systems are too pricey and, especially in a street car, bothersome to install.

Ken Christley consults his datalogging laptop while running a test on the Kenne Bell Fuel Flow Dyno 3000 bench. Having precision fuel system testing in-house has allowed Kenne Bell to zero in on what a performance fuel system must deliver. The bench cost about $10,000 to build, but along with KB’s Dynojet, eliminates the guesswork when engineering supercharger systems. Flow is from left to right — and mainly not visible — on the Kenne Bell test bench. The main tub of mineral spirits the fuel pumps are submerged in is under the far left end of the bench, followed by the flow meters. The car’s fuel line is visible on the backsplash, and finally, back through a return loop (no fuel rails or injectors were used in this particular test). Ken is adjusting the electrical power supply while monitoring the red numeral display in front of him.

To be more specific, Kenne Bell calculates its Boost-A-Pump module has the electrical juice to motivate enough fuel flow from the stock Ford fuel pump, lines and rails to support 1,100 horsepower; but providing enough fuel pressure is questionable at the 26 pounds of boost anticipated to make that sort of power from the 5.2-liter “Vooyote.”

The alternative is a multiple-fuel-pump race system — Kenne Bell has selected the triple pump system from Fore Innovations as its Plan B — and the question is more than academic. The Boost-A-Pump is within easy financial reach at $270 and dead simple to install.

If the Fore system is needed, it will add $2,500 or more to the project by the time it is installed, and that installation promises plenty of close-quarters fabrication opportunities in an engine compartment already stuffed with air conditioning, power steering, emission controls and so on. But, it has the muscle to deliver all the fuel an 1,100-horsepower engine could ever want.

Additionally, such a capable fuel system will unquestionably support whatever additional power the owner may desire down the road.